

PERTH MODERN SCHOOL

Exceptional schooling. Exceptional students. **Independent Public School**

Course _ Math	nematics Methods Year _11_
Student name: Mark Inquide Teacher name:	
Date:	21 September 2020
Task type:	Response
Time allowed for this task:45 mins	
Number of questions:	7
Materials required:	This assessment is calculator-free
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper (double sided)
Marks available:	44 marks
Task weighting:	_16%
Formula sheet provided: Yes	
Note: All part questions v	vorth more than 2 marks require working to obtain full marks.

Question 1 (2.1.1-2.1.7)

$$[5+1+4 = 10 \text{ marks}]$$

(a) Sketch the graphs of $y = 2^x + 2$ and $y = -2^x + 4$ on the axes below, showing important features of each graph.

(b) Using your graph (or otherwise), find the intersection point of these two functions.

(c) Solve for x: $9^{2x-1} = 243$

Question 2 (2.3.1, 2.3.4, 2.3.5)

[4+2 = 6 marks]

(a) For the function $f(x) = 3x^2$, use <u>first principles</u> to find $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ and hence show that f'(x) = 6x

(b) Briefly describe what $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ represents on a graph of f(x).

Question 3 (2.3.7, 2.3.13 – 2.3.17)

[4+4 = 8 marks]

The curve with the equation y = (x+1)(x-2)(x-5) cuts the x - axis at the points A(-1,0), B(2,0) and C(5,0). The expanded equation is $y = x^3 - 6x^2 + 3x + 10$

(a) Find $\frac{dy}{dx}$ and hence show that the <u>tangents</u> to the curve at points A and C are parallel.

(b) Find the equation of the <u>tangent</u> to the curve at the point C and find the point (x, y) where the <u>tangent</u> crosses the y - axis.

Question 4 (2.3.8 - 2.3.11)

[3+3 = 6 marks]

A jet pilot follows a flight path defined by $f(x) = x^3 - 9x^2 + 15x - 8$.

(a) Is the gradient of the flight path positive (going up) or negative (down) at the point (2,-6)? Explain your answer.

(b) At what x - values on the curve f(x) is the tangent <u>parallel</u> to the line y = 3?

Question 5 (2.3.3 - 2.3.7, 2.3.22)

[4 marks]

Find y in terms of x if $\frac{dy}{dx} = 3x^2 - 2x - 6$ and the function f(x) passes through the point (2,4).

Question 6 (2.3.10)

[4 marks]

A section of roller coaster has been constructed using the function:

$$f(x) = x^3 + 3x^2 - 4$$

An amusement park photographer is taking "action shots" near the roller coaster where the gradient is equal to -3 ("negative 3"). In terms of x-values, where is the photographer working? Explain your answer with suitable working.

Question 7 (2.3.19, 2.3.22)

[3+3 = 6 marks]

A function V(t) for which V'(t) = 4t + k, (where k is a constant), has a turning point at (1,-2). Find:

(a) The value of k

(b) The value of V(t) when t = 4